Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site.

نویسندگان

  • Craig M Hill
  • Wen-Shan Li
  • James B Thoden
  • Hazel M Holden
  • Frank M Raushel
چکیده

The bacterial phosphotriesterase has been utilized as a template for the evolution of improved enzymes for the catalytic decomposition of organophosphate nerve agents. A combinatorial library of active site mutants was constructed by randomizing residues His-254, His-257, and Leu-303. The collection of mutant proteins was screened for the ability to hydrolyze a chromogenic analogue of the most toxic stereoisomer of the chemical warfare agent, soman. The mutant H254G/H257W/L303T catalyzed the hydrolysis of the target substrate nearly 3 orders of magnitude faster than the wild-type enzyme. The X-ray crystal structure was solved in the presence and absence of diisopropyl methyl phosphonate. The mutant enzyme was ligated to an additional divalent cation at the active site that was displaced upon the binding of the substrate analogue inhibitor. These studies demonstrate that substantial changes in substrate specificity can be achieved by relatively minor changes to the primary amino acid sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detoxification of organophosphate nerve agents by bacterial phosphotriesterase.

Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest. Phosphotriesterase (PTE) isolated from the soil bacteria Pseudomonas diminuta disp...

متن کامل

Bacterial detoxification of organophosphate nerve agents.

Bacterial enzymes have been isolated that catalyze the hydrolysis of organophosphate nerve agents with high-rate enhancements and broad substrate specificity. Mutant forms of these enzymes have been constructed through rational redesign of the active-site binding pockets and random mutagenesis to create protein variants that are optimized for the detoxification of agricultural insecticides and ...

متن کامل

Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis.

The V-type nerve agents (VX and VR) are among the most toxic substances known. The high toxicity and environmental persistence of VX make the development of novel decontamination methods particularly important. The enzyme phosphotriesterase (PTE) is capable of hydrolyzing VX but with an enzymatic efficiency more than 5 orders of magnitude lower than with its best substrate, paraoxon. PTE has pr...

متن کامل

Phosphorus-31 Nmr Relaxation Studies of Diethyl P- Methoxyphenyl Phosphate Bound to Phosphotriesterase

The effect of MnZ÷/Mn 2÷, Mn2÷/Zn 2÷ and ~VIn2+]Cd 2÷ reconstituted phosphotriesterase on the 3~p spin lattice (1/Tx) relaxation rate of diethyl p-methoxyphenyl phosphate has been investigated. In the presence of MnZ÷/Mn 2+ phosphotriesterase, the spin lattice relaxation rate of the phosphorus atom is enhanced giving an upper limit for the phosphorus-metal root mean-sixth average distance of 4....

متن کامل

Protonation of the binuclear metal center within the active site of phosphotriesterase.

Phosphotriesterase (PTE) is a binuclear metalloenzyme that catalyzes the hydrolysis of organophosphates, including pesticides and chemical warfare agents, at rates approaching the diffusion controlled limit. The catalytic mechanism of this enzyme features a bridging solvent molecule that is proposed to initiate nucleophilic attack at the phosphorus center of the substrate. X-band EPR spectrosco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 125 30  شماره 

صفحات  -

تاریخ انتشار 2003